2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP) | 978-1-6654-2701-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/ASAP52443.2021.00018

2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP)

Customized Instruction on RISC-V for
Winograd-Based Convolution Acceleration

Shihang Wang', Jianghan Zhu', Qi Wang!, Can He! and Terry Tao Ye!:**
!Department of Electrical and Electronic Engineering,
Southern University of Science and Technology, Shenzhen, China
2University Key Laboratory of Advanced Wireless Communications of Guangdong Province,
Southern University of Science and Technology, Shenzhen, China
Email: yet@sustech.edu.cn

Abstract—Convolution operation accounts for the major work-
load in convolutional neural networks (CNN). However, standard
instruction set for RISC-V processor cannot efficiently perform
the matrix convolution between kernel and input matrices. In
this paper, we construct a custom instruction under the RISC-V
ISA that can perform the F'(2 X 2,3 X 3) convolution within
one single execution. Particularly, optimized by the Winograd
algorithm, the operation only needs 16 multiplications instead of
36 multiplications as needed by standard ISA. Benefit from this
new instruction, F'(2 X 2, 3 X 3) can be calculated within 19 clock
cycles, as compared to 140 cycles using standard instructions. The
power consumed during convolution operation is also reduced
significantly.

Index Terms—RISC-V,CNN,Winograd,Acceleration

[. INTRODUCTION

RISC-V architecture had demonstrated great potentials in
recent years. Benefit from its open-source instruction set
architecture (ISA), it enables the development of various
Application Specific Instruction-Set Processors (ASIP) that
can be tailor-made for different applications. RISC-V standard
ISA only defines some basic instructions that are both aligned
and compact, allowing for efficient decoding and processing. In
the meantime, the ISA is also very flexible for new instruction
extensions and additions [1]-[3].

In recent years, many artificial intelligence applications,
such as image/audio/video rendering and processing tasks
are implemented on edge computing platforms using CNN
architecture [4], [5]. As RISC-V gains its popularity in edge
computation platforms, CNN implementation on RISC-V
processor had attracted many interests both from research
institutes as well as industries [6], [7]. Convolution computation
accounts for the majority, in many cases, over 90% of the
workload in CNN. Under standard RISA-ISA pipelines, CNN
calculation needs constant fetching and data loading from cache
and memory, followed by ALU execution and writing-back.
The process is inefficient and time consuming; it also consumes
huge hardware overhead and power consumption.

In this paper, we have designed a custom instruction extended
from RISC-V ISA that can effectively perform the convolution
between kernel and input matrices. We also adopt the Winograd
algorithm to optimize the convolution calculation [8], and
implement the convolution operation, i.e., F(2 x 2,3 x 3)
in Verilog and encapsulate the calculation process into one
instruction. F'(2 x 2,3 x 3) is the matrix operation that a
kernel of the size 3 x 3 convolutes with an input matrix of

4 x 4 and generates an output matrix of 2 x 2. With Winograd
optimization, the calculation only needs 16 multiplications,
as compared to 36 multiplications using traditional direct dot-
product approaches. The instruction can be called directly from
RISC-V CPU, and the total instruction can be executed within
19 clock cycles, as compared to 140 cycles if F/(2 x 2,3 x 3)
is implemented by standard RISC-V ISA.

We use an open-source RISC-V core, RISCY, as the baseline
CPU. The standard RISC-V ISA, as well as our new custom
F(2 % 2,3 x 3) instruction, are all implemented in Verilog and
synthesized into FPGA platform NEXYS A7. The execution
latency, as well as power consumption, with and without
the custom instruction set, is also measured. The experiment
results demonstrate that our proposed new instruction not only
can speeds-up the convolution operation, it also saves power
consumption in performing the CNN tasks.

The paper is organized as follows. Section II introduces the
methods to add custom instructions in RISC-V ISA. Section
IIT describes the Winograd algorithm that can be used to
accelerate the convolution calculation. FPGA implementation
and performance analysis will be in Section IV, followed by
the conclusion in Section V.

II. ADDING CUSTOM INSTRUCTIONS

The RISC-V ISA supports multiple instruction subsets, and
different instruction functions can be realized by configuring
different instruction subsets. Different instruction subsets are
suitable for different tasks. For example, the basic instruction
set (I instruction subset) supports operations including addition,
subtraction, shift, XOR and other logics. Integer multiplica-
tion and division instruction subsets (M instruction subset)
can provide operations including multiplication and division
operations. If a 32-bit RISC-V ISA supports a subset of I and
M, it is conventionally named as RV32IM.

RISCY is a four-stage pipelined single-issue RISC-V ISA
processor that supports the RV32IMC instruction set [9]. RISC-
V ISA is very flexible in adding new instructions, the ISA
reserves four opcodes for the users to define additional custom
instructions in the opcode map, as shown in TABLE 1.

We use the “custom-1" reserved opcode in TABLE I to
encode the proposed custom convolution instruction. We name
the instruction “CONV23”, with the opcode 0x2B.

The main function of CONV23 is to perform a convolution
calculation between a 4 x 4 input matrix and a 3 x 3 convolution
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TABLE I
RISC-V OPCODE MAPPING TABLE ,(INST[1:0]=11)

Inst[4:2]
000 001 010 011 100 101 110 111 (>32b)
Inst[6:5]
00 LOAD | LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32 48b
01 STORE | STORE-FP | custom-1 AMO OP LUIL OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP | resreved | custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rv128 > 80b

kernel matrix and generates a 2x2 output matrix. The input
matrix is stored in the memory before the convolution operation,
and the elements of the convolution kernel are stored in the
convolution acceleration module.

There are six types of RISC-V instruction set encoding
formats [10], as shown in Fig. 1. Each format is intended for
different functions. For example, J-type format is for out-of-
order instructions, R-type format is used to perform logical
operations between values stored in two registers respectively,
while I-type format is used to perform logical operations on
immediate data and values stored in registers. Our proposed
CONV23 performs convolution calculation, the elements of
matrices are from memories and cache, not from immediate
values, instead the instruction needs two source registers to
store the size of the input matrix and the first address of
memory that stores the input matrix data. So CONV23 uses
the R-type instruction format.

31 25 24 20 19 16 14 12 11 76 1]

The Winograd minimal filtering algorithm is a multiplication-
reduction method for optimizing convolution calculations [11].
It is more efficient when the kernel size is small. We will first
use a simple example to explain the algorithm, and then derive
its general formula.

For a convolution between a 4-element input vector d =
(do, d1,dz2,d3) and a 3-element filter vector g = (go, g1, g2),
it will generate a 2-elements output. This convolution can be
denoted as F'(2,3). The first number “2” indicates the size of
the output, and the second number “3” indicates the size of
the filter.

The 4-elements of the input can be folded into a two-

dy di ds . .
. The convolution operation
dy dy ds

can then be transformed into the multiplication of two matrices,
as shown in the Eq. 1.

go
do dy d
F2,3) = | 9 R | = |Motmtme g

dimensional matrix

R-type funct? | rs2 el funct3 rd opcode dl d2 d3 mip —mgo —ms3
I-type imm[11 E\l] rsl funct3 rd opoode Where 92
S-type inn[11:5] rs2 sl funct3 imm [4: 0] opcode
B-type | inm[12] | imn[10-5] | rs2 rsl funct3 | inl4:0] in(11]  opcode _ _ go+ g1+ 92
Uftze imm[31: 12] rd ul;:ode mo = (dO - d2)g0 my = (dl + d2) (2)
T-type | inn[20] | iwm[i0:1] | imm[11] | inm[19:12] rd opcode 9 — ¢ + g
Fig. 1. RISC-V instruction format. ms = (dy — d3)go  mao = (da — d1)% 3)

The instruction format of CONV23 is shown in Fig. 2. The
rsl register and rs2 register are two source registers, and
the processor will perform operations based on the values in
these two registers, more specifically, the s/ register stores
the size of the convolution input matrix, and the rs2 register
stores the value of the first address of the input matrix in
memory. The rd register is the destination register; it can be
any register in CONV23 because CONV23 will not write back
any value to the rd register. The three bits in funct3 represent
rd, sl and rs2 from left to right, which indicate the usage of
rsl, rs2 and rd. If the values of rsl, rs2 or rd is not used,
the corresponding bit in funct3 is set to 0, otherwise it is 1.
Funct7 is used to distinguish different functions of the same
opcode. Since there are no other functions, this value is 0.

|comvzs |

opcode |
0x2E |

functT | rs2 | sl
0000000 | address | size |

Fig. 2. CONV23 instruction format.
In order for RISCY processor to recognize CONV23,
the decoding unit needs to be modified. Once the decoder

[ functa | Td [
011 | + |

unit encounters the CONV23 instruction, the convolution 10-10 100
acceleration module is executed to perform the convolution 111 0 01 1 0 % % %

t‘ . - = =
operation 01-1-1 0-11 0 111
III. CONVOLUTION ACCELERATION MODULE 01 0 —1 001

A. Winograd algorithm

Convolution acceleration module implements the CONV23
function once the instruction is called by the CPU. Winograd
algorithm is used to accelerate the convolution calculation.

The %t9lt92 and 20-91%92 can be calculated before
convolution, so 4 multiplications and 4 additions needed
to calculate the terms mg, m1, me and mg. Additionally, 4
additions are needed to calculate the results from mg, mq, mo
and ms. After the conversion, 4 multiplications and 8 additions
are required.

The Winograd algorithm involves three steps. 1) Convert the
input data and filter into the matrix forms , 2) Calculating the
intermediate terms using Equation 2. and Equation 3. and 3)
Adding and subtracting from the intermediate terms to generate
the final results.

In general, Winograd convolution can be formulated into
matrix operations, defined as follows:

Y = AT[(Gg) © (BT d)] “)

In this equation, d and g are the input vector and the filter
vector respectively. A, B and G are the transformation matrix
of d and g. A, B and G are defined as follows.

For a one-dimensional convolution operation with m-elements
output and r-elements filter, it can be denoted as F'(m, r) only
m + r — 1 multiplications are needed.
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We can derive the two-dimensional F'(2 x 2,3 x 3) from the
one-dimensional F'(2,3), where the A, B, and G in equation 4
are changed into two-dimensional forms. As shown in Equation

6 Y = AT[(GgG") ® (BTdB) A 5)

Using Winograd algorithms, the convolution operation
between a 4 x 4 input matrix and 3 x 3 filter matrix generating
a 2 X 2 output matrix, i.e., denoted as F'(2x 2,3 x 3), requires a
total of 16 multiplication operations and 85 addition operations.

In comparison, traditional convolution using direct dot-
product operation requires 36 multiplication operations. Wino-
grad algorithm can reduce the number of multiplication by a
factor of 4/9, or 55.5%.

F(2 % 2,3 x 3) can be used as the basic convolution unit;
convolution with larger input matrix (larger than 4 x 4) can
be constructed from F(2 x 2,3 x 3). Winograd algorithm
can also be applied to calculate convolutions with larger filter
matrix and results matrix, i.e., larger m, r for F'(m, r), however,
calculating larger m and r also requires more additions and
subtractions. These overhead will compromise the savings from
multiplication, and eventually makes Winograd on larger filter
matrices less efficient as compared to smaller filter matrices.
Therefore, F'(2 x 2,3 x 3) is the commonly used in many CNN
calculations.

B. Acceleration (CONV23) module design

The architecture of the acceleration module (CONV23)
is shown in Fig. 3. When the module is called to perform
convolution F'(2 x 2,3 x 3), RISCY processor retrieves the
data from the memory by calling the LSU module and transfers
the data of input matrix to the CONV23 module. The data
of input matrix is temporarily stored in 16 32-bit registers.
And then the CONV23 module performs the calculation and
outputs 2x2 output matrix (4 elements). The execution of the
CONV23 instruction only needs 16 load-data operations and 1
Winograd algorithm operation.

RISCY / Convolution Unit

Memory LsuU data winograd
registers | | calculation
Fig. 3. architecture of acceleration system.

The operation of the CONV23 module is a 3-state state
machine, namely, the idle state, the get — data state and the
calculation state. In the idle state, if the RISCY processor
fetches the CONV23 instruction, the state machine changes
from the idle state to the get — data state. In the get — data
state, the CONV23 module reads one data from the memory
each clock cycle according to the first address. After taking
16 input data, the state changes to the calculation state. In
this state, the result is calculated by the combinational logics,
the output can be generated after the logic delay performing
the calculation.

In the CONV23 instruction, the clock cycles needed to
perform the complete execution can be divided into four groups.
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1) 1 cycle is needed to detect the enable signal of the
CONV23.

2) 1 cycle is needed to assign the first address of input data
in the memory to convolution acceleration module.

3) 16 cycles are needed to finish 16 load-data operations.

4) The last 1 cycle is needed to finish the calculation of
Winograd.

The simulation waveform of the execusion is shown in Fig.
4. The position of first line in Fig. 4 is the start time of the
CONV23 instruction. After 1 clock cycle, the state machine
changes from IDLE to GET_DATA. The position of the second
line and third line in Fig. 4 is the start and end time of the 16
load-data operation. The output of 4 elements are calculated
in the position of the last line.

IV. IMPLEMENTATION AND PERFORMANCE ANALYSIS
A. Timing and latency comparison

Using the standard ISA in a generic RISCY processors,
calculating the convolution between a 3 x 3 input and a 3 X 3
kernel needs 9 load-data operations of input data, 9 load-data
operations of kernel, 9 multiplication operations and 8 addition
operations. And the above process needs to repeat four times
to calculate F(2 x 2,3 x 3), where the input matrix is 4 X 4.
Therefore, using standard RISC-V ISA, F'(2 x 2,3 x 3) needs
72 load-data instructions, 36 multiplication instructions and 32
addition instructions. For the RISCY processor, executing an
instruction requires 1 clock cycle, a total of 140 clock cycles
are required to perform F'(2 x 2,3 x 3) at RI5CY.

In comparison, CONV23 instruction only takes 19 clock
cycles to perform the F(2 x 2,3 x 3) operation, achieving a
7.37x of speedup.

B. Comparison of hardware resource overhead

The original generic RISCY processor, as well as the
extended CONV23 instruction, is synthesized by Vivado and
implemented on the NEXYS A7 FPGA platform, In order
to estimate the hardware resources needed by the CONV23
module, the number of resources such as LUT and FF, with
and without CONV23 module, is shown in Fig. 5.

From the table, we can estimate that CONV23 uses 1253
LUTs, 54 FFs, and 10 BUFGs. Conversely, the overhead created
by CONV23 is 10.9% of LUT and 0.8% of FF.

C. Power consumption comparison

The power consumption to perform the F'(2 x 2,3 x 3) func-
tion, with and without the CONV23 instruction, is compared
from the Vivado hardware resource report, as shown in Fig. 6.

For the generic RISCY processor, before F'(2 x 2,3 x 3)
operation is performed, the power consumption (baseline
power consumption) is 0.262W, during the calculation of
F(2 x 2,3 x 3), the power consumption rises up to 0.310W,
i.e., the operation costs a power overhead of 0.048W. In
comparison, with the CONV23 instruction added to the
core, the baseline power consumption increased to 0.283W,
because extra hardware overheads (more LUTs and FFs) are
added. However, when F(2 X 2,3 x 3) is executed with the
CONV23 instruction, the power consumption only increases
to 0.302W, i.e., CONV23 only costs 0.019W of extra power
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Fig. 4. Simulation waveform of CONV23 instruction.
Resource Utization Available Utiization % matrix. We also exploit Winograd algorithm to optimize the
Lut 11502 52400 1214 convolution calculation, only 16 multiplications is needed to
£ il e a0 perform the convolution as compared to 36 multiplications
DSP ] 240 250 . . .
= - . o needed from direct dot-product calculation. The execution of
. 5 = 55 CONV23 only needs 19 clock cycles, as compared to 140 clock
PLL 1 8 1667 cycles if F'(2 x 2,3 x 3) is performed by standard RISC-V
Without CONV23 modul. ISA. The proposed CONV23 instruction is implemented on
a thout mot € .
(2) Withou . an open-source RISC-V CPU RISCY core and synthesized
_ o into FPGA platform. The source code is placed on GitHub
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2 i 240 250 2.6% power consumption saving.
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Power consumption of RISCY
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« Convolutional operation
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Fig. 6. Power consumption of RISCY.

consumption. The total power consumption by the RISCY
core with CONV23 is around 2.6% less than that without
CONV23. The power saving is coming from the reduction of
multiplication operation counts. This analysis indicates that
while the CONV23 instruction achieves the 7.37x speedup, it
still maintains a similar, or even lower power consumption.

We further compare the energy consumed by the operation
F(2 x 2,3 x 3) alone on the RISCY core, with or without
the CONV23 instructions. RISCY core is running at 100MHz
clock frequency on the FPGA platform. Without CONV23,
F(2 x 2,3 x 3) needs 140 clock cycles, or 1400ns, the energy
consumed is 0.048W x 1400ns = 67.2nJ. With CONV23,
F(2x2,3x3) needs 19 clock cycles, the energy consumption
for this instruction is 0.019W x 190ns = 3.61nJ.

V. CONCLUSION

In this paper, we constructed a customized instruction
“CONV23” based on RISC-V ISA. The instruction can perform
a basic convolution operation between a 4 x 4 input matrix
and a 3 x 3 kernel matrix and generates a 2 x 2 output
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